Moving Average Introduzione Previsione. Come si può immaginare che stiamo guardando alcuni degli approcci più primitive di previsione. Ma si spera che questi sono almeno un'introduzione utile per alcuni dei problemi informatici relativi all'attuazione previsioni nei fogli di calcolo. In questo filone si continuerà avviando all'inizio e iniziare a lavorare con Moving previsioni medie. Spostamento previsioni medie. Tutti conoscono lo spostamento previsioni medie indipendentemente dal fatto che credono di essere. Tutti gli studenti universitari fanno loro tutto il tempo. Pensa ai tuoi punteggi dei test in un corso dove si sta andando ad avere quattro prove durante il semestre. Consente di assumere hai un 85 sul vostro primo test. Che cosa prevedere per il secondo punteggio test Cosa pensi che la tua insegnante di prevedere per il prossimo punteggio test Cosa pensi che i tuoi amici potrebbero prevedere per il prossimo punteggio test Cosa pensi che i tuoi genitori potrebbero prevedere per il prossimo punteggio del test Indipendentemente tutto il blabbing si potrebbe fare ai tuoi amici e genitori, e il vostro insegnante è molto probabile che si aspettano di ottenere qualcosa nella zona del 85 che avete appena ottenuto. Bene, ora lascia supporre che, nonostante la vostra auto-promozione per i tuoi amici, ti sopravvalutare se stessi e capire che si può studiare meno per la seconda prova e così si ottiene un 73. Ora, che sono tutti di interessati e indifferente andare a anticipare avrete sulla vostra terza prova ci sono due approcci molto probabili per loro di sviluppare una stima indipendentemente dal fatto che condivideranno con voi. Essi possono dire a se stessi, quotThis ragazzo è sempre soffia il fumo delle sue intelligenza. Hes andando ad ottenere un altro 73 se hes fortuna. Forse i genitori cercano di essere più solidali e dire, quotWell, finora youve acquistasti un 85 e un 73, quindi forse si dovrebbe capire su come ottenere circa una (85 73) 2 79. Non so, forse se l'avete fatto meno festa e werent scodinzolante la donnola tutto il luogo e se hai iniziato a fare molto di più lo studio si potrebbe ottenere una maggiore score. quot Entrambe queste stime sono in realtà in movimento le previsioni medie. Il primo sta usando solo il tuo punteggio più recente di prevedere le prestazioni future. Questo si chiama una previsione media mobile utilizzando uno periodo di dati. Il secondo è anche una previsione media mobile ma utilizzando due periodi di dati. Lascia supporre che tutte queste persone busting sulla vostra grande mente hanno sorta di voi incazzato e si decide di fare bene sulla terza prova per le proprie ragioni e di mettere un punteggio più alto di fronte al vostro quotalliesquot. Si prende il test e il punteggio è in realtà un 89 Tutti, compreso te stesso, è impressionato. Così ora avete la prova finale del semestre in arrivo e come al solito si sente il bisogno di pungolare tutti a fare le loro previsioni su come youll fare l'ultimo test. Beh, speriamo che si vede il motivo. Ora, si spera si può vedere il modello. Quale credi sia la più accurata Whistle mentre lavoriamo. Ora torniamo alla nostra nuova impresa di pulizie ha iniziato dal sorellastra estraniato chiamato Whistle mentre lavoriamo. Hai alcuni dati di vendita del passato rappresentata dalla sezione seguente da un foglio di calcolo. Per prima cosa presentiamo i dati per un periodo di tre movimento previsione media. La voce per cella C6 dovrebbe essere Ora è possibile copiare questa formula cella verso le altre cellule C7-C11. Si noti come le mosse medi durante il più recente dei dati storici, ma utilizza esattamente i tre periodi più recenti disponibili per ogni previsione. Si dovrebbe anche notare che noi non veramente bisogno di fare le previsioni per i periodi precedenti al fine di sviluppare la nostra più recente previsione. Questo è sicuramente diverso dal modello di livellamento esponenziale. Ive ha incluso il predictionsquot quotpast perché li useremo nella pagina web successiva per misurare la previsione di validità. Ora voglio presentare i risultati analoghi per un periodo di movimento previsione media di due. La voce per cella C5 dovrebbe essere Ora è possibile copiare questa formula cella verso le altre cellule C6-C11. Notate come ora solo i due più recenti pezzi di dati storici sono utilizzati per ogni previsione. Ancora una volta ho incluso il predictionsquot quotpast a scopo illustrativo e per un uso successivo nella convalida del tempo. Alcune altre cose che sono importanti per notare. Per un periodo di m-movimento previsione media solo il m valori dei dati più recenti sono usati per fare la previsione. Nient'altro è necessario. Per un periodo di m-movimento previsione media, quando si effettua predictionsquot quotpast, si noti che la prima previsione si verifica nel periodo m 1. Entrambi questi aspetti sarà molto significativo quando sviluppiamo il nostro codice. Sviluppare il Moving Average funzione. Ora abbiamo bisogno di sviluppare il codice per la previsione media mobile che può essere utilizzato in modo più flessibile. Il codice segue. Si noti che gli ingressi sono per il numero di periodi che si desidera utilizzare nella previsione e la matrice dei valori storici. È possibile memorizzare in qualsiasi cartella di lavoro che si desidera. Media mobile Funzione (storici, NumberOfPeriods) As Single Dichiarazione e inizializzazione delle variabili ARTICOLO Dim come variante Dim contatore come Integer Dim accumulo As Single Dim HistoricalSize come numero intero inizializzazione delle variabili contatore 1 Accumulo 0 Determinazione della dimensione della matrice storica HistoricalSize Historical. Count per il contatore 1 Per NumberOfPeriods accumulare il numero appropriato di più recenti valori precedentemente osservati accumulo accumulazione storica (HistoricalSize - NumberOfPeriods Counter) media mobile accumulo NumberOfPeriods il codice verrà spiegato in classe. Si desidera posizionare la funzione sul foglio in modo che il risultato del calcolo appare dove dovrebbe come il following. Moving media: Che cosa è e come calcolarlo guardare il video o leggere l'articolo qui sotto: Una media mobile è una tecnica per avere un'idea complessiva delle tendenze in un insieme di dati è una media di qualsiasi sottoinsieme di numeri. La media mobile è estremamente utile per la previsione delle tendenze a lungo termine. È possibile calcolare per qualsiasi periodo di tempo. Ad esempio, se si dispone di dati di vendita per un periodo di venti anni, è possibile calcolare una media mobile di cinque anni, una media mobile di quattro anni, a tre anni di media mobile e così via. analisti del mercato azionario spesso utilizzare una media mobile a 50 o 200 giorni per aiutarli a vedere le tendenze nel mercato azionario e (si spera) del tempo in cui sono diretti gli stock. Una media rappresenta il valore 8220middling8221 di un insieme di numeri. La media mobile è esattamente lo stesso, ma la media è calcolata più volte per diversi sottoinsiemi di dati. Ad esempio, se si desidera una media mobile di due anni per un set di dati da 2000, 2001, 2002 e 2003 si dovrebbe trovare le medie per i sottoinsiemi 20002001, 20.012.002 e 20022003. Le medie mobili di solito sono tracciate e sono più visualizzabili. Calcolo di un 5-Year Moving Problema media Esempio Esempio: Calcolare una media di cinque anni passando dal seguente set di dati: (4M 6M 5M 8M 9M) 5 6.4M la media delle vendite per il secondo sottogruppo di cinque anni (2004 8211 2008). centrato attorno al 2006, è 6.6M: (6M 5M 8M 9M 5M) 5 6.6M la media delle vendite per il terzo sottogruppo di cinque anni (2005 8211 2009). centrato intorno al 2007, è 6.6M: (5M 8M 9M 5M 4M) 5 6.2M continuare a calcolare ogni media di cinque anni, fino a raggiungere la fine del set (2009-2013). Questo vi dà una serie di punti (medie) che è possibile utilizzare per tracciare un grafico delle medie mobili. La seguente tabella Excel mostra le medie mobili calcolate per 2003-2012 insieme ad un grafico a dispersione dei dati: guarda il video o leggere i passi di seguito: Excel ha un potente add-in, dei dati Strumenti di analisi (come caricare i dati Strumenti di analisi) che offre molte opzioni extra, tra cui una funzione di media mobile automatizzato. La funzione non solo calcola la media mobile per te, rappresenta graficamente anche dati originali contemporaneamente. risparmiando un bel po 'di tasti. Excel 2013: passi Passo 1: Fare clic sulla scheda 8220Data8221 e quindi fare clic su 8220Data Analysis.8221 Passo 2: Cliccare 8220Moving average8221 e quindi fare clic su 8220OK.8221 Fase 3: Fare clic sulla casella 8220Input Range8221 e quindi selezionare i dati. Se si includono intestazioni di colonna, assicurati di controllare le etichette in scatola prima fila. Fase 4: Inserire un intervallo nella casella. Un intervallo è quanti punti precedenti si desidera Excel da utilizzare per il calcolo della media mobile. Ad esempio, 822058221 avrebbe utilizzato i precedenti 5 punti dati per calcolare la media per ogni punto successivo. Più basso è l'intervallo, la media più vicino il vostro movimento è al vostro set di dati originali. Fase 5: Fare clic nella casella 8220Output Range8221 e selezionare un'area del foglio di lavoro in cui si desidera visualizzare il risultato. In alternativa, fare clic sul pulsante di opzione worksheet8221 8220New. Passo 6: Selezionare la casella 8220Chart Output8221 se si desidera visualizzare un grafico dei dati set (se si dimentica di fare questo, si può sempre tornare indietro e aggiungerlo o scegliere un grafico dal 8220Insert8221 tab.8221 Punto 7: Premete 8220OK 0,8221 Excel restituirà i risultati nella zona specificata al punto 6. Guarda il video, o leggere i passi di seguito: Esempio problema: calcolare la media mobile di tre anni in Excel per i seguenti dati di vendita: 2003 (33M) 2004 (22M), 2005 (36M), 2006 (34M), 2007 (43M), 2008 (39M), 2009 (41M), 2010 (36M), 2011 (45M), 2012 (56M), il 2013 (64M). Passo 1: Inserire i dati in due colonne in Excel la prima colonna dovrebbe avere l'anno e la seconda colonna i dati quantitativi (in questo esempio problema, i dati di vendita) Verificare che non vi siano righe vuote nei dati celle Fase 2... : Calcolare il primo media triennale (2003-2005) per i dati per questo problema di esempio, tipo 8220 (B2B3B4) 38221 in D3 cella calcolo del primo media Passo 3:... Trascinare il quadrato nell'angolo in basso a destra verso il basso per spostare la formula a tutte le celle della colonna. Questo calcola le medie per gli anni successivi (ad esempio 2004-2006, 2005-2007). Trascinando la formula. Fase 4: (Facoltativo) Creare un grafico. Selezionare tutti i dati nel foglio di lavoro. Fare clic sulla scheda 8220Insert8221, quindi fare clic su 8220Scatter, 8221 quindi su 8220Scatter con linee morbide e markers.8221 Un grafico della vostra media mobile apparirà sul foglio di lavoro. Controlla il nostro canale YouTube per ulteriori statistiche aiutano e suggerimenti Moving Average: Che cosa è e come calcolare è stato modificato l'ultima volta: 8 gennaio 2016 da Andale 22 pensieri su ldquo Moving Average: Che cosa è e come calcolarlo rdquo Questo è perfetta e semplice da assimilare. Grazie per il lavoro Questo è molto chiaro e informativo. Domanda: Come si fa a calcolare un 4 anni media mobile che anno sarebbe il movimento centrale media di 4 anni sulla Sarebbe centrare la fine del secondo anno (cioè 31 dicembre). Posso usare reddito medio per prevedere i guadagni futuri qualcuno sa media circa centrato Vi preghiamo gentilmente dirmi se qualcuno sa. Qui it8217s visto che dobbiamo prendere in considerazione 5 anni per ottenere la media che è in center. Then per quanto riguarda gli anni di riposo, se vogliamo ottenere la media di 20118230as abbiamo don8217t avere ulteriori valori dopo il 2012, quindi come potremmo calcolare come si don8217t ha più informazioni, sarebbe impossibile calcolare il mA 5 anni per il 2011. si potrebbe ottenere due anni di media mobile però. Ciao, Grazie per il video. Tuttavia, una cosa è chiara. Come fare una previsione per i prossimi mesi mostra il video di previsioni per i mesi per i quali i dati sono già disponibili. Ciao, Crudo, I8217m lavorando per ampliare l'articolo per includere la previsione. Il processo è un po 'più complicato rispetto all'utilizzo di dati passati però. Date un'occhiata a questo articolo Duke University, che spiega in modo approfondito. Saluti, Stephanie grazie per un explanantion chiaro. Ciao Impossibile trovare il link per l'articolo Duke University suggerito. Richiesta per pubblicare il link againIntroduction a ARIMA: modelli non stagionale ARIMA (p, d, q) equazione di previsione: modelli ARIMA sono, in teoria, la classe più generale di modelli per la previsione di una serie di tempo che può essere fatta per essere 8220stationary8221 dalla differenziazione ( se necessario), forse in combinazione con trasformazioni non lineari come registrazione o sgonfiando (se necessario). Una variabile casuale che è una serie temporale è stazionaria se le sue proprietà statistiche sono tutte costanti nel tempo. Una serie stazionaria ha alcuna tendenza, le sue variazioni intorno la sua media hanno una ampiezza costante, e dimena in modo coerente. ossia suoi schemi temporali casuale breve termine sempre lo stesso aspetto in senso statistico. Quest'ultima condizione implica che le sue autocorrelazioni (correlazioni con i propri precedenti deviazioni dalla media) rimangono costanti nel tempo, o equivalentemente, che il suo spettro di potenza rimane costante nel tempo. Una variabile casuale di questa forma può essere visto (come al solito) come una combinazione di segnale e rumore, e il segnale (se risulta) potrebbe essere un modello di regressione medio veloce o lento, o oscillazione sinusoidale, o rapida alternanza di segno , e potrebbe anche avere una componente stagionale. Un modello ARIMA può essere visto come un 8220filter8221 che cerca di separare il segnale dal rumore, e il segnale viene poi estrapolato nel futuro per ottenere delle previsioni. L'equazione di previsione ARIMA per una serie temporale stazionaria è un lineare (cioè la regressione-tipo) equazione in cui i predittori sono costituiti da ritardi della variabile dipendente Andor ritardi degli errori di previsione. Cioè: Valore atteso di Y un andor costante una somma pesata di uno o più valori recenti di Y eo una somma pesata di uno o più valori recenti degli errori. Se i predittori sono costituiti solo di valori ritardati di Y. si tratta di un modello autoregressivo puro (8220self-regressed8221), che è solo un caso particolare di un modello di regressione e che potrebbe essere dotato di un software di regressione standard. Ad esempio, un autoregressiva del primo ordine (8220AR (1) 8221) modello per Y è un modello di regressione semplice in cui la variabile indipendente è semplicemente Y ritardato di un periodo (GAL (Y, 1) in Statgraphics o YLAG1 in RegressIt). Se alcuni dei fattori predittivi sono ritardi degli errori, un modello ARIMA NON è un modello di regressione lineare, perché non c'è modo di specificare period8217s 8220last error8221 come una variabile indipendente: gli errori devono essere calcolati su base periodica-to-periodo quando il modello è montato dati. Dal punto di vista tecnico, il problema con l'utilizzo errori ritardati come predittori è che le previsioni model8217s non sono funzioni lineari dei coefficienti. anche se sono funzioni lineari dei dati passati. Così, i coefficienti nei modelli ARIMA che includono errori ritardati devono essere stimati con metodi di ottimizzazione non lineare (8220hill-climbing8221) piuttosto che da solo risolvere un sistema di equazioni. L 'acronimo ARIMA sta per Auto-regressiva integrato media mobile. Ritardi della serie stationarized nell'equazione di previsione sono chiamati termini quotautoregressivequot, ritardi della errori di previsione sono chiamati quotmoving termini averagequot, e una serie di tempo che deve essere differenziata da effettuare stazionaria si dice che sia una versione quotintegratedquot di una serie stazionaria. modelli casuali di tendenza modelli di livellamento esponenziale casuale passeggiata e, modelli autoregressivi, e sono tutti i casi particolari di modelli ARIMA. Un modello ARIMA nonseasonal è classificato come (p, d, q) modello quot quotARIMA, dove: p è il numero di termini autoregressivi, d è il numero di differenze non stagionali necessari per stazionarietà, e q è il numero di errori di previsione ritardati in l'equazione di previsione. L'equazione di previsione è costruito come segue. In primo luogo, Sia Y il d ° differenza di Y. che significa: Si noti che la seconda differenza di Y (il caso d2) non è la differenza da 2 periodi fa. Piuttosto, è la prima differenza-of-the-prima differenza. che è l'analogo discreto di una derivata seconda, cioè l'accelerazione locale della serie piuttosto che la sua tendenza locale. In termini di y. l'equazione generale di previsione è: Qui i parametri medi in movimento (9528217s) sono definiti in modo tale che i loro segni sono negativi nell'equazione, seguendo la convenzione introdotta da Box e Jenkins. Alcuni autori e software (incluso il linguaggio di programmazione R) definirli in modo che abbiano segni più, invece. Quando i numeri reali sono inseriti nell'equazione, non c'è ambiguità, ma it8217s importante sapere quali convenzione il software utilizza quando si sta leggendo l'output. Spesso i parametri sono indicati lì da AR (1), AR (2), 8230, e MA (1), MA (2), 8230 ecc per identificare il modello ARIMA appropriato per Y. si inizia determinando l'ordine di differenziazione (d) che necessita stationarize serie e rimuovere le caratteristiche lordi di stagionalità, forse in combinazione con una trasformazione varianza stabilizzante come registrazione o sgonfiando. Se ci si ferma a questo punto e prevedere che la serie differenziata è costante, si è semplicemente montato un random walk o modello tendenza casuale. Tuttavia, la serie stationarized potrebbe ancora essere autocorrelato errori, il che suggerisce che un numero di termini AR (p 8805 1) Andor alcuni termini numero MA (q 8805 1) sono necessari anche nell'equazione di previsione. Il processo di determinazione dei valori di p, d, e q che sono meglio per una data serie di tempo saranno discussi nelle sezioni successive di note (i cui collegamenti sono nella parte superiore di questa pagina), ma in anteprima alcuni dei tipi di modelli ARIMA non stagionali che vengono comunemente riscontrato è riportata qui sotto. ARIMA modello autoregressivo (1,0,0) del primo ordine: se la serie è fermo e autocorrelato, forse può essere previsto come multiplo del proprio valore precedente, più una costante. L'equazione di previsione in questo caso è 8230which è Y regredito su se stessa ritardato di un periodo. Questo è un modello constant8221 8220ARIMA (1,0,0). Se la media di Y è zero, allora il termine costante non verrebbe inclusa. Se il coefficiente di pendenza 981 1 è positivo e meno di 1 su grandezza (che deve essere inferiore a 1 a grandezza se Y è fermo), il modello descrive significare-ritornando comportamento in cui il valore prossimi period8217s dovrebbe essere previsto per essere 981 1 volte lontano dalla media come questo period8217s valore. Se 981 1 è negativa, predice significare-ritornando comportamento con alternanza di segni, cioè si prevede anche che Y sarà al di sotto del prossimo periodo media se è al di sopra del periodo di dire questo. In un modello autoregressivo del secondo ordine (ARIMA (2,0,0)), ci sarebbe un termine Y t-2 sulla destra pure, e così via. A seconda dei segni e grandezze dei coefficienti, un (2,0,0) modello ARIMA poteva descrivere un sistema il cui reversione medio avviene in modo sinusoidale oscillante, come il moto di una massa su una molla che viene sottoposta a shock casuali . ARIMA (0,1,0) random walk: Se la serie Y non è fermo, il modello più semplice possibile è un modello casuale, che può essere considerato come un caso limite di un AR (1) modello in cui la autoregressivo coefficiente è uguale a 1, cioè una serie con infinitamente lenta reversione media. L'equazione pronostico per questo modello può essere scritto come: dove il termine costante è la variazione media del periodo a periodo (cioè lungo termine deriva) in Y. Questo modello può essere montato come un modello di regressione non intercetta in cui la prima differenza di Y è la variabile dipendente. Dal momento che include (solo) una differenza non stagionale e di un termine costante, è classificato come un quotARIMA (0,1,0) modello con constant. quot Il caso-roulant senza modello - drift sarebbe un ARIMA (0,1, 0) modello senza costante ARIMA (1,1,0) differenziata modello autoregressivo del primo ordine: Se gli errori di un modello random walk sono autocorrelati, forse il problema può essere risolto con l'aggiunta di un ritardo della variabile dipendente alla previsione equation - - cioè regredendo la prima differenza di Y su se stessa ritardato di un periodo. Ciò produrrebbe la seguente equazione previsione: che possono essere riorganizzate a Questo è un modello autoregressivo del primo ordine con un ordine di differenziazione non stagionale e di un termine costante - i. e. un (1,1,0) modello ARIMA. ARIMA (0,1,1) senza costante livellamento esponenziale semplice: Un'altra strategia per correggere gli errori autocorrelati in un modello random walk è suggerita dal semplice modello di livellamento esponenziale. Ricordiamo che per alcune serie di tempo non stazionaria (ad esempio quelle che presentano fluttuazioni rumorosi intorno a una media lentamente variabile), il modello random walk non esegue così come una media mobile di valori passati. In altre parole, invece di prendere l'osservazione più recente come la previsione della successiva osservazione, è preferibile utilizzare una media degli ultimi osservazioni per filtrare il rumore e più accuratamente stimare la media locale. Il semplice modello di livellamento esponenziale utilizza una media mobile esponenziale ponderata dei valori del passato per ottenere questo effetto. L'equazione pronostico per la semplice modello di livellamento esponenziale può essere scritto in un certo numero di forme matematicamente equivalenti. una delle quali è la cosiddetta forma correction8221 8220error, in cui la precedente previsione viene regolata nella direzione dell'errore fece: Perché e t-1 Y t-1 - 374 t-1 per definizione, questo può essere riscritta come : che è un ARIMA (0,1,1) - senza-costante equazione di previsione con 952 1 1 - 945. Ciò significa che è possibile montare un semplice livellamento esponenziale specificando come un modello ARIMA (0,1,1) senza costante, e il MA stimato (1) coefficiente corrisponde a 1-minus-alfa nella formula SES. Ricordiamo che nel modello SES, l'età media dei dati nelle previsioni 1-periodo-ahead è 1 945. senso che essi tenderanno a restare indietro tendenze o punti di svolta da circa 1 945 periodi. Ne consegue che l'età media dei dati nelle previsioni 1-periodo-prima di un ARIMA (0,1,1) - senza-costante modello è 1 (1-952 1). Così, per esempio, se 952 1 0.8, l'età media è 5. Come 952 1 avvicina 1, il ARIMA (0,1,1) - senza-costante modello diventa un media-molto-lungo termine in movimento, e come 952 1 si avvicina a 0 diventa un modello random walk-senza-drift. What8217s il modo migliore per correggere autocorrelazione: aggiunta termini AR o aggiungendo termini MA Nelle precedenti due modelli di cui sopra, il problema degli errori autocorrelati in un modello casuale è stato fissato in due modi diversi: aggiungendo un valore ritardato della serie differenziata l'equazione o l'aggiunta di un valore ritardato del l'errore di previsione. Quale approccio è meglio Una regola empirica per questa situazione, che sarà discusso più dettagliatamente in seguito, è che autocorrelazione positiva di solito è meglio trattata con l'aggiunta di un termine di AR al modello e negativo autocorrelazione di solito è meglio trattata con l'aggiunta di un MA termine. In serie business e tempo economica, autocorrelazione negativa si pone spesso come un artefatto di differenziazione. (In generale, differenziazione riduce autocorrelazione positiva e può anche provocare un interruttore da positivo a negativo autocorrelazione.) Quindi, il modello ARIMA (0,1,1), in cui la differenziazione è accompagnato da un termine MA, è più spesso utilizzato che un ARIMA (1,1,0) del modello. ARIMA (0,1,1) con costante semplice livellamento esponenziale con la crescita: Con l'implementazione del modello SES come un modello ARIMA, è in realtà guadagnare una certa flessibilità. Prima di tutto, il MA stimata (1) coefficiente è permesso di essere negativo. questo corrisponde ad un fattore di livellamento maggiore di 1 in un modello SES, che normalmente non è consentito dalla procedura model-fitting SES. In secondo luogo, si ha la possibilità di includere un termine costante nel modello ARIMA se lo si desidera, al fine di stimare un andamento medio diverso da zero. L'(0,1,1) modello ARIMA con costante ha l'equazione di previsione: Le previsioni di un periodo a venire da questo modello sono qualitativamente simili a quelle del modello SES, tranne che la traiettoria delle previsioni a lungo termine è in genere un pendenza riga (la cui pendenza è uguale a mu) anziché una linea orizzontale. ARIMA (0,2,1) o (0,2,2) senza costante livellamento esponenziale lineare: lineari modelli di livellamento esponenziale sono modelli ARIMA che utilizzano due differenze non stagionali in collegamento con termini MA. La seconda differenza di una serie Y non è semplicemente la differenza tra Y e si ritardato da due periodi, ma piuttosto è la prima differenza della prima --i. e differenza. il cambiamento-in-the-cambiamento di Y al periodo t. Così, la seconda differenza di Y al periodo t è uguale a (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. Una seconda differenza di una funzione discreta è analoga ad una derivata seconda di una funzione continua: misura la quotaccelerationquot o quotcurvaturequot in funzione in un dato punto nel tempo. L'(0,2,2) modello ARIMA senza costante prevede che la seconda differenza della serie è uguale a una funzione lineare delle ultime due errori di previsione: che può essere riorganizzato come: dove 952 1 e 952 2 sono il MA (1) e MA (2) coefficienti. Questo è un modello di livellamento esponenziale lineare generale. essenzialmente lo stesso modello di Holt8217s e Brown8217s modello è un caso speciale. Esso utilizza pesato esponenzialmente medie mobili stimare sia a livello locale e una tendenza locale nella serie. Le previsioni a lungo termine di questo modello convergono ad una retta la cui inclinazione dipende dalla tendenza media osservata verso la fine della serie. ARIMA (1,1,2) senza costante smorzata-trend lineare livellamento esponenziale. Questo modello è illustrato nelle slide di accompagnamento sui modelli ARIMA. Si estrapola la tendenza locale alla fine della serie, ma appiattisce fuori a orizzonti previsionali più lunghi per introdurre una nota di cautela, una pratica che ha supporto empirico. Vedi l'articolo sul quotWhy il Damped Trend worksquot da Gardner e McKenzie e l'articolo quotGolden Rulequot da Armstrong et al. per dettagli. In genere è consigliabile attenersi a modelli in cui almeno uno dei p e q non è maggiore di 1, vale a dire non cercare di adattarsi a un modello come ARIMA (2,1,2), in quanto questo rischia di portare a sovradattamento e le questioni che sono discussi in modo più dettagliato nelle note sulla struttura matematica dei modelli ARIMA quotcommon-factorquot. implementazione foglio di calcolo: modelli ARIMA come quelli sopra descritti sono facili da implementare su un foglio di calcolo. L'equazione previsione è semplicemente una equazione lineare che fa riferimento ai valori passati della serie temporale originale e valori passati degli errori. Così, è possibile impostare un foglio di calcolo di previsione ARIMA memorizzando i dati nella colonna A, la formula di previsione nella colonna B, e gli errori (previsioni di dati meno) nella colonna C. La formula di previsione in una cella tipica nella colonna B sarebbe semplicemente un'espressione lineare di riferimento ai valori nelle precedenti file di colonne a e C, moltiplicata per i coefficienti appropriati AR o MA memorizzati nelle celle altrove sul foglio.
No comments:
Post a Comment